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1. Introduction

Consider a (linear or nonlinear) dynamical system with a wide-band noise
input. It is often of considerable interest to approximate such systems by
diffusion models so that, e.g., Markov process technigues can be used. In [1] -
(41, (71, several powerful methods for doing this have been developed.

Roughly, the input noise process is parametrized by ¢ and as ¢ + 0, the bandwidth
(BW) -+ =, while the power per unit BW converges to a constant. The limit process
is found via methods of weak convergence theory. The methods are particularly
useful when the system noise (and/or signal) is processed nonlinearly; i.e.,

only nonlinear functions of the noise appear in the dynamics. The problem is
often not what the so-called correction term might be, but what the entire

form of the limit is, and this is not usually easy. In fact, when nonlinear

functions of the noise appear, the notion of "correction term" loses much of its sense.

In this paper, the system of Figure 1 is dealt with.

¢ = F(v) + DyS,

(1.1)
y =L, sign ut, w =8 +1nf - v, vé(t) € RY,

where n®(-) is a scalar-valued wide-band noise input process. Conditions
on F(+), n®(-) and G(:) will be given below. The main result is that as € + 0
(BW + =), the measures of {v-(:)} converge to those of v(-) where v(:) satisfies

the 1t8 equation
(1.2) dv = F(v)dt + w[(i'-gﬂ) (Y2/m) dt + ¥2 In 2/a dB],

where B(°) is a standard Brownian motion and L, o, a will be defined below.

Roughly, "a" is related to the correlation function of the ne(')/(Elnt(t)lz)llzo

and 02 is the intensity of the spectrum of n€() in any band [0,BW] for small €.
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If, in the system of Fig. 1, the saturator and gain Lc were replaced by a

gain K, then the limit would be (follows from the method of this paper)

(1.3) dv = F(v)dt + KD[(s-G(v))dt + V2R dbl],

where for the noise modelused for (1%1), R = oz/a. There is no so-called
"correction term". Owing to the form of the saturator function, the formal
technique of Stratonovich is inapplicable.

The example is offered to illustrate what can be done with one particularly
annoying but useful nonlinearity. The basic method is widely applicable. The
scheme is unrelated to statistical linearization, which in fact is not con-
cerned directly with approximating processes.

Before proceeding, compare (1.2) and (1.3) for the case when the feedback
-G(-) is supposed to be stabilizing (i.e., when the system is designed to make
the error s(t)-G(ve(t)) small. 1In (1.2), the term in the dynamics whic
involves the error is proportional to 1/¢, and in (1.3), the noise term is

proportional to o. Thus for small 0, we expect the limiter to enhance stability

without increasing the noise effects, an important point to note, For large o,

the limiter does not seem to be helpful. A simulation comparison of the "pre-limit"
with the limit for a somewhat different problem (a phase-locked loop with a satur-
ator) suggests that the limit (¢ -+ 0) results are often the "worst" case, in that
(for example) the limit mean square error often increased to the limit value as

€ + 0. (They also suggest that often the limit process is approached quite fast

(as measured, say, by the mean square valus of the input to the limiter) as ¢ + 0.)
e do not know the axtent of applicability of this rule - but it seems to hold
frecuently. When it does hold, the limit results can provide useful upper bounds,

and system improvements suggested Ly the form of the limit might well be improvements

.
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for the “pre-limit" case also. Unfortunately, it is not usually possible to get
approximate diffusion processes where the BW is not large - so, even if it is not

large, the results for large BW might be a useful guide to the qualitative behavior.

Reference [5] contains some applications to problems in communications
theory of the same general idea. But owing to the unbounded nature of the noise
and the form of the discontinuity and feedback, the problem here is harder
and the analytical details different.

Section II gives specific assumptions. The main background theorem and
some comments on weak convergence appear in Section III, and the convergence
{ve(')} + v(+) is proved in Section IV. A similar method would be used with

other nonlinearities.

II. Model Assumptions

1. The noise model. Let z(:) denote a stationary Gaussian process with

correlation function o> exp -a|t|, a > 0,and set nf(t) = z5(t) /e, where

25 (1) = z(t/ez). As ¢ + 0, the spectral density of nf () converges to 202/a
on any finite interval. The scaling is a convenient and common way of getting
a noise process n®(+) whose spectrum converges (as € + 0) to that of a white
noise with a constant power/unit bandwidth. For other correlation functions
the v¥2 1n 2 in (1.2) is replaced by something slightly different. We use

the noise form only to facilitate the evaluation of the coefficient of dB(°)
in (1.2). The Gaussian assumption simplifies the proof that certain integrals

converge - but is not essential.

2. The limiter gain Lc. It Lc Z L, a number not depending on ¢, then

as € + 0, the "increased wildness" of n“(-) essentially wipes out the saturator -

=

— .
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replacing it by an open circuit. Thus Le must increase as € decreases. In
any particular fixed practical system, one particular value of LC will be used.
But as the bandwidth -+ =, this value of Le will have to increase (see proof in
Section 1V) and eLe will have to converge to a non-zero number. So we use

Lc = L/c.

3. Other assumptions. G(-), F(.) are continuously differentiable and

the solution to (1.2) is unique in the weak sense. s(°) is right continuous

and uniformly bounded on [0,~). The method is most easy to use if the functions

are smooth. The analysis will be done with ga(-) replacing g(-) = sat(:),

where the piecewise linear ga(-) is defined in Fig. 2. We then get the result

{vé(-)} > v(-) as € » 0, then a + O,

III1. Weak Convergence; A Convergence Theorem

Tightness. Let D' (0,=) denote the space of R*-valued functions on [0,=)
which are right continuous and have left-hand limits. A certain topology
called the Skorokhod topology ([6], section 14) is usually put on p*. The
process v (*) is considered to be a random variable with values in p* [0,=) and
induces a measure P_ on it. {Pe} or {v8(-)} is said to be tight iff for
each § > O there 'is a compact x6€ Drlo,w) such that Pe(KG) > 1-§, all €.

{(v€(-)} is said to converge weakly to a process v(*) with paths in D*{0,») and

inducing measure P on it iff for each bounded real-valued function g(:) on
o"[0,=), fq(u)dpe(w) + fq(u)dﬂw) as ¢ » 0. Thus weak convergence is a
generalization of convergence in distribution. It is the appropriate form of
convergence for our problem. The tightness condition for {v ()} will hold

under our assumptions.
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Truncated processes. The actual technical proofs of tightness and weak

convergence are easier if the processes {v‘(-)} are bounded. Define

(3.1 "N - [p(v"“)my""]bN(v""), yEN . Lrga(uc'";,

€,N

: €
u =s+nC-G(v'N)

,

where bN(v) =1 for vE SN = {v: |VI§N}' bN(V) =0 for vg& S and bN(v) € [0,1)

N+1

and has third derivatives that are bounded uniformly in v and N. If we can

prove convergence for vV , €40} for each N, then Theorem 1 says that we

can prove it for (1.1). Thus, the truncation is purely technical and does not

affect the result.

Definitions. Let A denote the infinitesimal operator of the diffusion (1.2).
Let?i’“ denote the o-algebra induced by (ve'N(s) ,n¢{s) ,8<t} and E:'N the cor-
responding conditional expectation. Mct:ually_?f_-'N and E:'N depend on a also.

But we usually suppress the a affix. Lei % be the class of measurable (w,t)
functions such that if g(-) € &, then Elql(t+6)-g(t)| +0as 6§ + 0 and
8

sup E|g(t)| < » and g(t) depends only on (v Ng) n° (8) ,85t}. We say p-li.lc_.o £f =
t

0 iff sup, t*G (t)| { = ana !:|f6 (t)| + 0 as § + 0. Define an operator AN and its
’

domain Z(A°'Y) as follows: ¢ € DA'N) and A°"Ng = q 1£f g,q€ ¥ and
£ Ng(t48)-g(t)
p-lim E| 5 - q(t)| =o0.

8}0

The following theorem is Theorem 1 of (2], adapted to our case. fo denotes

the set of continuous real-valued functions on Rr x (0,=),

= e AN
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Theorem 1. Let the eguation (1.2) have a unique weak-sense solution. Fix N.

For each f(') € @, a dense set (sup norm) in g"o, let there be a sequence

(e Ynew satisfying the following:

(3.2 p-lim | £ N0t N, 0| - o0,
€0
a0

[y

3.3 £8% € 2kY,

(3.4)  p-lim |AS NS N(g)- (N +——)f(v Yu,o) =
e-+0

a0

e sptiond u—d omand

where AN is the infinitesimal operator of some diffusion process and the coeffic-

ients of A" and A are equal for v €& Sy- Then if {ve'N() ) is tight for each N,

{(vE ()} + v(:) weak y.

Comment. Tightness is not hard to prove here. See comments at the end
of the proof of Theorem 2, which applies Theorem 1 to our case (1.1). Given
£(-,+), the main problem is to find the £5'N(-) and to verify (3.2) - (3.4)

(and ultimately to prove tightness). The method used here and in [1], [2] is

i 4
similar to the averaging method used in (3]. We choose the form £ = s
£(ve (t) t) + f (t) + f (t), where fl (t) is chosen so as to "average out" i .
certain noise-dependent terms in A% Ne (vt N (t),t), and t‘;'“(t) is chosen to ) '
"average out" certain noise-dependent terms which result from applying Ac'“ ]
to f (t). In the proof limc_‘o means limc__o lima_'o. s |
a0 , i
.»"L b LIS '
w g ik aat -
SR S s




IV. The Convergence Theorem

Theorem 2. Under the assumptions in Section II, {vt ()} converges weakly to

v(-) as € » 0 and then a -+ 0.

-~
Proof. Let 9 = 93'3, the subspace of %'0 of functions whose mixed partial
derivatives up to order 2 in t and 3 in x are continuous. By Theorem 1, for

each N and f(-,:) € 2, we only need to find (fC'N(-)} satisfying (3.2) - (3.4).

€,

For notational convenience write v N(-) as v€(-) in this proof, but we are always

working with the truncated process v© ”u(-).

pPart 1. Fix f(*,*) € £. Then
4.1) A VewS (o) ,0 = ft(ve(t).t) +
DL

+ b (v EDELE () ,8) + (FVE(R)) + 2 g (s(t)en® (0)-G(vE (e,

Note that for u in any bounded set

(4.2) %Egc(ume(t)) éa(u)/e = —i—[P{z(O)>-su+ea)-P{z(0)<-eu-eu}+o(ca)/c)

Y2/ 0-!+ O(a) + Ole),

which justifies the Lc = L/e scaling. We will get fc'N(-) in the form

€,N

£ N0 = 10,0 4 £

(t) + f;'N(t) ,

€N

i (+) will be defined below.

where the f




The following estimate will be uscd.

(4.3) oOn_the set {]z(t)|<1} or even on {|z(t)|j¢aT/2},

-a. vt
|p{z(t+t) € Blz(t)} - P{z(t+1) ¢ B} < Ce 1" for some constants C and

a > 0, uniformly in B. Similarly, on the same z(t) set and for

> 0,
-a, T

lp{z(c+ri)e B, i=1,2|z(t)} - P{z(ti+t)G'Bi, i=1,2}| < ce 1) ¢or some

a, >0 and C < = and all B

1 B

1’ 72
In the sequel the values of al and C may change from usage to usage.
Define aa(u,ne(t)) = gq(u+ne(t)) - Ega(u+ne(t)) and define

N =2 b (wE(ey (e (ve(t),t+t)DEi'N§u(s(t+1)-G(ve(t)),nC(t+1))dT

= b (vS () [£2(vE (1), t+e?DIDEL NG (s (tre’n) -6 (vE (0))2(F5) /e)ar

€

|
|

By (4.3, £;'M(t) = 0(e) uniformly in w, a,on the set {|z(t/e?) |<1).

Define w, = min{rt: e-at/zlz(t/ez)lf}}. write fi'"(.) as

1
Hl L
e,N - €/N €,N .
fl (v e[ E, {*}) ar + e] E, {.-1 ar.
0 wl

The first term is bounded in absolute value by eCw1 and the integrand of the

second by C exp -alt. Thus

.0 [£5°N )] < ce(dow)) < cell + max(0,10g|2%(0) 1.
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Part 2. It can be verified that fe'N(~) € .01(;\6'") and that

1

[
Lb_ (v (t)) . _
(4.5) if'“fi'“(t) = - ——LC—-—— f",(vL(t).t)an(s(t)-G(vc(t))cnc(t))

v

%fs '"th<v€(:))f;,(v“(c),mmaa(s(m)-c(v"(t)),n‘(mm' v,
0

where the subscript*v denotes the gradient of the bracketed expression with

respect to vE(t). At this point, let us simplify the notation by dropping the

bN(v) terms. All of the fi'N-will be proportional to either bN(vE(t)) or
bs(ve(t)). Changing variables 1/52 + 1 and splitting the integral in (4.5)
into two parts and using v = bN(ve)[s-G(v€)+Dga/£] (but dropping the bN(v))
yields

(4.6) LZJEz'N(D'fv(ve(t).t+52‘r)):’D9u((t+c21)-G(vL(t)).2(-:'—2+t)/c)
0

g, (s(t)-G(vE (1)) +z(t/e?) se)dn + o(e)

€,N, _, € 2 -, 2., _ € t .
+ L IEt (D fv(v (t) ,t+e 1))gaﬂﬂs(t+e 1) =-G(v (t),z(-3+r)/e)o
0

[

g, (s(t) —c(vE(t)) +z(t/ed) e)at + O(e) .

The terms in (4.6) exist by the same arguments which led to (4.4). We
next show that the second integral of (4.6) is negligible as ¢ + 0, a +> 0 and
get an estimate which is useful for the tightness argument. The facts that
s(t) and vc(t) are bounded (recall that we are using the truncated process

(3.1)) and that the support of g,  (u) is*in [-a,a] and that Iqa “(u)l < C/a

(-) is the derivative of 3 (+] with respect to its argument. The -ublctipt v
donotcs the derivative with respect to the oxplicit argument v: replace v (t}} take
the derivative with respect to v, then set v = ve(t).
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will be used frequently and perhaps without specific mention. Let I{A} denote
the indicator function of the set A.

By (4.3) it can be verified that

@.n vz [ENG (s—Gtv),z(Epr) /e) | < fexp -+ | z(t/e3]>e2¥ ?hicse.
1
€
We need a bound on Y which goes to zero as € + 0. First we get such a bound ]

when |z(t/e?)| > 1. Note that
(4.8) P{Is—G(v)+z(£5+T)/c| <a z(t/ez)szo) = O(ug)
€

uniformly for lzol >1and 1 > 0 (recall that s, v are in a bounded set -
for each N). Now, (4.8) and the facts cited above (4.7) imply that Y is bounded

by O(e), uniformly in lz(t/52)| >1, Tt > 0. Thus on |z(t/52)| >1,

a1/2}]1/2 /2

(4.9) Y < [exp -a;T + I{Iz(t/€2)|>e c(s:/ct)1

(use |x| < a, |x| <b=> |x| < Yab). Thus, on integrating the bound when

|z(t/e?)| > 1, we see that the second term of (4.6) is bounded above by
c{l1 + max(O, log|z(t/52)|)] (E/u)l/?.

Now, we look for a bound when |z(t/cz)| < 1. Split the second integral in

€ L]
(4.6) into the two parts f + f. The first part is O(e/a). Note that the
0 ¢
density of z(£5+1), T > £, conditioned on any value of lz(t/ez)] in (0,1], is

€
bounded above by 0(1/ve). So (4.8) then holds with O(ca) replaced by O(cl/za).

» oot Y
.

-,

o —— -
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Combining this estimate with (4.7) yields that Y is bounded above by (4.9) when

|z(t/52)| < 1, but with the change that (s:/m)l/2 is replaced by (51/4/a1/2) in

(4.9). Thus, on integrating the bound, we get that the second term of (4.6) is

bounded above by

(4.100  CI1 + max(0, log|z(t/e?) ) 1:/4/a22.

Part 3. We turn our attention to the first term of (4.6) and show that,
by an "averaging", it can effectively be replaced by its expectation. To facil-

itate the development, we define the following terms.
hc(v,t,r,p) = L2D'fw(v,t+t+p)D'§a(S(t+‘l'+o)-G(v)+ne(t+‘t+p)) .

. qa(s(t+p)-G(v)+ne(t+p)),

He(v,t,1,p) H L2D'fvv(v,t+521+e20)D'Eu(&ﬂe+c21+czp)-G(v)+z(23+t+p)/c) .

[

. qa(s(t+ezp)-G(v)+z(E—+p)/e).

2
€
oo (-]
(4.11) Ag'Nf(v,t) E IEHe(v,t,t,O)dr = li IEhe(v,t,t,O)dt.
€
0 0
(4.12) f;'N(t) z 53 Ido [ dt[E:'Nh (v&(t),t,1,0) - Eh (v,t.r.o)l )
€ € €
€ 5 vey (t)
0
w [ ]
2 €,N €
= ¢ fdp I dt(Bt He(v (te),t,t,0) - Eﬂe(v,t,t.p)| c 1,
o o vay - (t)

o e VB A s 3
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where implies that v is replaced by vc(t) after taking the expectation.
v v (t)

We must show that fg'N(-) is well defined. First note that the inner integral
of fg'N(t) (with p = 0 and a change of variables) is just the first term of
(4.6) centered about its expectation. The form of fZ'N(-) is chosen to allow

us to average out the firgt term of (4.0) and to effectively replace it by its

average value Ag'Nf(vc(t).t). }

By the method used to bound |f;'N(t)|, we can get that the inner integral .

&

of f;'N(t) exists for each p. Recall the definition w, = min{w: e—aw/zlz(t/82)|§1}

and write (4.12) as
oo @ wl 4
62 f dp f dat EE'NB + e2 J dp f dt Ez’NB 2 IT + I.
w 0 0 0

First we show that II is well defined. By (4.3) and the definition of w,, the

1'
absolute value of the integrand in II is bounded above by C exp -a,0, a; > 0.

Also IEHE(v,t,t,p)| < C exp -a,T for some a, > 0. By (4.3) and on the set

{pzyl}, and for C, a, (whose values again may change from usage to usage)

|E:'Nﬂe(v,t,r,p)| gSN|gsoN

{A

H (v,t,T,p) l
teedp ©

-at/2|

IA

c Ei'“[exp -a,T + i{e z(£3+p)|3;}]
€

at/2‘

= C exp -a, T+ CP{Iz(£3+p)|3p pzylsz(t/cz)}
€

C exp -a, T+ Ce'°1/22{|3(55+p)|1 pgylrz(t/cz))
€

ia

1A

C exp -a 1.
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Chebychev's inequality is used to get the next-to-last inequality. Combining
the above estimates yields that the inteqrand in II is bounded by (for some a > o,
C < ®) C exp —al(‘tﬂ)). tlence II = O(t‘z).

The term I is also 0(82) but not uniformly in z(t/».z) . Bound the inner

integral of I by

a0 (-]
J dt\Ei'NBl < Ei'N f ar |EE'N2 B| = TII.
0 0

t+e p

By the arguments used to get the bound on lt‘i'N(t) |, we get

III < ce? Ei'Nll + max(0, 1og|z(£?-p) 1
€

ce? Ez'Nll + 1og(|z(53+p)l + 1)

E

IA

By Jensen's inequality and the concavity of log(-),

111 < ce?(l + 1og(|z(5’—2-)| +0)].
€

Since w, < C max(0, log|z(t/52) [,

e,N

(4.13) £

(0] < ce?l1 + log(|z(55) | + o0,
€
Henceforth, we will give only an outline of the details, which can all
be filled in via the estimates and techniques developed above. It can be shown

that f;'"(') € DAY and that
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~€,N

(4.14) AS'NgeoN

€,

f 0

{t) = negative of first term of (4.6) + A Nf(vc(t),t)

+ (terms whose p-lim equal zcero).
(R4
[189)

The term whose p-lim = 0 is just (f;':(t))’ﬁb(t), where fg': is the gradient
] r

. € »
of the expression for f N with respect to the arqument v((t). The components

2

of ﬂe'Nf;'N which involve fvvv are bounded by O(e). Loosely speaking, the -

remaining component is of the form

E,N - C'N - -
(4.15) ofe) + CJI[Et fvvga,vga + Et fvvgaqa,v E fwga,vga -
- E fvv gaga'v]dep T 9y -

where we omit the function arquments. By a method similar to that used to get

(4.13), we get the bound (4.13) on (4.15) but with (c/a) replacing €.

Part 4. The estimates obtained in Parts 1 - 3 imply that

p-lim £S5 () -£(vE(v),0) | = O,

e+0 i

a0
p-1im [A5NE€(0-£ v (0,00 12T ““’;G“’c""ﬂ D'f (vE(t) ,t) 5
oo _
- Ag'Nf(ve(t),t)| = 0. !

A proof very similar to that in ([5), Section 6, part 2) yieldd that Ag'“f(v.:) -

D'fvv(v.e)n(ln 2)/a uniformly in v for each t. In calculating the limit, the ,

'Ono of the reasons for the choice cov[i(O),:(t)] - czcxp =at is to allow us to save l‘
work by using this result. The choice allowed an explicit evaluation of the diffusion
tarm, With other choices the diffusion coefficient would be left in an “integral” form. ﬂ

vewaa - am ]
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G(-), s(*) play no role and the limit (¢ + 0, a + 0) is the same as for the

case (a = 0, ¢ + 0). If the bN(v) terms were retained, the result would be the
2 .

same, except that either bN or bN would multiply the fv' tvv or fvvv' By what

has just been said

(4.16) p-lim |AS M€ N(y) - (%— + AEWE(R),0) ] =0,
e+0 t
a-+0

where A is the infinitesimal operator of v(°) in (1.2). 1If bN were retained,
the A in (4.16) would be replaced by some AN which would equal A where bN(') =1,
i.e. in S,. Thus, by Theorem 1, if v&'N() ) vere tight, then the proof would

be completed.

Tightness. Use ([2], Theorem 2).The conditions of Theorem 2 [2] hold if (4.17)
holds for each N and T < o

(4.17)  lim 1im P(sup|A®*¥e*'N(v)| > k} = 0,

K+ e+0  t<T
a+0

Lim p(sup [£;"M01+£5 N (0)] > 6) = 0, each & > 0.
€0  t<T
a->0
But (4.17) follows from (4.10), (4.13) (and a similar estimate for (4.15), and

the fact that the Gaussianness and stationarity imply that {or any ¥ > o,

—t e

5 S A R L M ARy i W i

1m sup ¢'jzlt/eD)| =0 w.p. 1. 0.E.D.
€+0 t<T
}
U |
—

- adan
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